More Friction Problems

1. An 8 kg wooden block rests on a wooden table. The coefficient of static friction is 0.62 . What is the maximum force that can be applied to the block without it moving?
2. A 50.0 N force is applied horizontally to a 200.0 N box causing it to slide across the floor with a constant velocity. What is the coefficient of kinetic friction between the box and the floor?
3. Batman is driving the batmobile at a rate of $50 \mathrm{~m} / \mathrm{s}$ when he notices a cliff 150 m ahead. He steps on the brakes locking the wheels and begins to skid. The batmobile has a mass of 2500 kg and the coefficient of friction between the car tires and the road is 0.8 . Does Batman stop in time?
4. A horizontal force of 60 N is applied to a box with a mass of 10 kg . The force causes the box to accelerate at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$. Calculate
(a) the force of kinetic friction acting on the box?
(b) the coefficient of kinetic friction between the two surfaces?
5. A block of wood slides along the floor with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between the floor and the block is 0.3 . How far will the block slide until it stops?
6. A 10 kg box is sliding down an incline of 30°. Calculate the coefficient of kinetic friction when the box is sliding down the slope with
(a) a constant velocity.
(b) an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$.
7. A 4 kg box is placed on an incline with an angle of 30°. The coefficient of static friction between the surfaces is 0.68 . Will the box remain at rest?
8. You find yourself pushing a 60 kg box at constant velocity up a ramp of 15°. The coefficient of kinetic friction between the box and the ramp is 0.25 . Calculate how much force you are exerting on the box.

1.	48.61 N	5.	4.25 m		
2.	0.25		6.	(a)	0.58
3.	no			(b)	0.34
4.	(a)	40 N	7.	yes	
	(b)	0.41	8.	294.18 N	

